A Topological Gauss-bonnet Theorem

نویسنده

  • RICHARD S. PALAIS
چکیده

The generalized Gauss-Bonnet theorem of Allendoerfer-Weil [1] and Chern [2] has played an important role in the development of the relationship between modern differential geometry and algebraic topology, providing in particular one of the primary stimuli for the theory of characteristic classes. There are now a number of proofs in the literature, from the quite sophisticated (deducing it as a special case of the Atiyah-Singer index theorem for example) to the relatively elementary and straightforward. (For a particularly elegant example of the latter see [7, Appendix C].) In general these previous proofs have a definite cohomological flavor and invoke explicit appeals to general vector bundle or principal bundle theory. In view of the above historical fact this is perhaps natural, and yet from another point of view it is somewhat anomalous. For the theorem states the equality of two quantities:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gauss-bonnet Theorem

The Gauss Bonnet theorem links differential geometry with topology. The following expository piece presents a proof of this theorem, building up all of the necessary topological tools. Important applications of this theorem are discussed.

متن کامل

The Gauss-Bonnet-Chern Theorem on Riemannian Manifolds

This expository paper contains a detailed introduction to some important works concerning the Gauss-Bonnet-Chern theorem. The study of this theorem has a long history dating back to Gauss’s Theorema Egregium (Latin: Remarkable Theorem) and culminated in Chern’s groundbreaking work [14] in 1944, which is a deep and wonderful application of Elie Cartan’s formalism. The idea and tools in [14] have...

متن کامل

Topological Quantum Numbers and Curvature — Examples and Applications

Using the idea of the degree of a smooth mapping between two manifolds of the same dimension we present here the topological (homotopical) classification of the mappings between spheres of the same dimension, vector fields, monopole and instanton solutions. Starting with a review of the elements of Riemannian geometry we also present an original elementary proof of the Gauss-Bonnet theorem and ...

متن کامل

Global Conformal Invariants of Submanifolds

The goal of the present paper is to investigate the algebraic structure of global conformal invariants of submanifolds. These are defined to be conformally invariant integrals of geometric scalars of the tangent and normal bundle. A famous example of a global conformal invariant is the Willmore energy of a surface. In codimension one we classify such invariants, showing that under a structural ...

متن کامل

New index formulas as a meromorphic generalization of the Chern-Gauss-Bonnet theorem

Laplace operators perturbed by meromorphic potential on the Riemann and separated type Klein surfaces are constructed and their indices are calculated by two different ways. The topological expressions for the indices are obtained from the study of spectral properties of the operators. Analytical expressions are provided by the Heat Kernel approach in terms of the functional integrals. As a res...

متن کامل

The Gauss-Bonnet Theorem for Vector Bundles

We give a short proof of the Gauss-Bonnet theorem for a real oriented Riemannian vector bundle E of even rank over a closed compact orientable manifold M . This theorem reduces to the classical Gauss-Bonnet-Chern theorem in the special case when M is a Riemannian manifold and E is the tangent bundle of M endowed with the Levi-Civita connection. The proof is based on an explicit geometric constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008